
On-Board SIC INVERTER **REFERENCE DESIGN**

The high power density, easily configurable On-Board SiC Inverter Reference Design, has been developed to be one step closer to production-ready. This reference design is targeted for in-vehicle and field testing, further accelerating time-to-market and reducing engineering required to achieve a functional electric drive train.

With a broad voltage and power range, based on the modular SiC inverter platform, it provides a very flexible solution for new electric drive trains that need to operate in harsh environments, like off-road and high performance automotive, avionics, marine and many other applications.

KEY SPECIFICATIONS

- Output power: 100 up to 350kW_{PEAK}
- Bus voltage: 100 up to 850V_{PEAK}
- High power density: up to 50kW/litre

KEY FEATURES

- 3-phase 1200V SiC power module
- Ultra-fast OLEA® T222 FPCU control board 0
- Customizable OLEA® APP Inverter software
- DC and phase current sensors
- DC link capacitor & EMI filter 0
- Liquid cooling

INVERTER SOFTWARE

- FIELD ORIENTED CONTROL (FOC)
- HIGH CONTROL LOOP AND SWITCHING FREQUENCIES (UP TO 50KHz)
- ADVANCED MODULATIONS (SVPWM, DPWM)
- FLUX WEAKENING FOR EXTENDED SPEED
- OPTIMIZED DEAD TIME COMPENSATION IMPROVED TOTAL HARMONICS DISTORTION (THD)
- REDUCED HVDC LINK VOLTAGE RIPPLE

- FUNCTIONAL SAFETY

 OLEA® T222 PROCESSOR & SOFTWARE: ISO26262 ASIL-D AND AUTOSAR 4.3 CERTIFIED
- INVERTER CONTROL MODULE:

 DESIGNED FOR ISO-26262 ASIL-D (CERTIFICATION ONGOING)

CALIBRATION AND DEBUG

- 1 x Programming and Configuration Connector (LAUTERBACH TRACE INTERFACE)
- 1 x SWD DEBUG INTERFACE

STANDARD INTERFACE

- 1 x CAN FLEXIBLE DATA RATE INTERFACE UP TO 8 MBIT/S
- 1 x CAN HIGH SPEED RATE INTERFACE UP TO 1 MBIT/S
- 2 x MOTOR TEMPERATURE MEASUREMENT WITH SIGNAL CONDITIONING CIRCUITRY FOR PT1000 SENSOR.

 1 x RESOLVER INTERFACE (EXC/SIN/COS)
- 1 x BATTERY INPUT CONNECTION
- 1x HVIL INPUT CONNECTION
- 2 x DIGITAL INPUT SIGNALS
- 1 x DIGITAL OUTPUT SIGNAL
- SPARE: 1x ANALOG OR DIGITAL INPUT SIGNAL

OPTIONAL INTERFACES

- 1 x USB CONNECTION
- 1 x Quadrature encoder interface (A/B/I)
- 3 x Digital Hall effect interface
- 5 x Analog input signals
- 6 x DIGITAL INPUT SIGNALS
- 6 x Digital output for relay interfaces
- 2 x Auxiliary 5V

WWW.CISSOID.COM

On-board SIC INVERTER REFERENCE DESIGN

Inverter characteristics	Values	Units
DC Bus Voltage - operating	100 to 800	V _{DC}
Maximum DC Bus Voltage non-operating	850	V _{DC}
Maximum Phase Current - Steady State - Amphenol HVSL1 3phase connector - TE HVP-HD1400 3phase connector	250 320*	A _{RMS}
Maximum Phase Current - Peak (60s)	565	A _{PEAK}
Maximum Output Power – Steady State - Amphenol HVSL-1000 3phase connector - TE HVP-HD1400 3phase connector	245 300*	kW
Maximum Output Power – Peak (60s)	350	kW
Output Frequency	100 to 2000	Hz
Inverter PWM frequency	10 to 50**	kHz
DC link capacitor	135 - 500	μF
DC Bus Discharge Time (passive)	<60	S
Vehicle Battery Voltage Supply	6 to 36	V _{DC}
Operating Temperature Range (coolant)	-40 to +65	°C
Coolant Flow Rate	2 to 20	litre/min
3-phase connector (Amphenol HVSL1000023A1H8)	IP69K / 1kV / 250A HVIL	
Battery connector (Amphenol HVSL1400022A1D8S6)	IP67 - IP6K9K / 1kV / 430A HVIL	
Dimensions (outline)	381 x 220 x 90	mm
Dimension (volume)	6.73	litre
Power density (Steady State)	36	kW/litre
Power density (60s peak)	52	kW/litre
Inverter Peak Power Efficiency @ 210kW, 700V, 275ARMS, 10kHz @ 50kW, 700V, 100ARMS, 10kHz	> 99 99.1 99.6	%

^{*} Design modifications required

^{**} Output power derating versus PWM frequency